Top Math Topics for Sindh University Entry Test: Numbers, Rational/Irrational, & Quick Sum Tricks

Social Share

Question: What are Numbers?

Answer: Numbers are the foundation of mathematics, helping usย count, measure, compare, and labelย objects or quantities.

๐Ÿ”น In simple terms:
Numbers tell us “how many,” “how much,” or “in what position” something is.

Table of Contents

๐Ÿ“š Types of Numbers (With Examples)

1๏ธโƒฃ Natural Numbers (Counting Numbers)

  • Used for basic counting.
  • Examples: 1, 2, 3, 4, 5, …
  • Note: Starts from 1 (does not include 0).

2๏ธโƒฃ Whole Numbers

  • Natural numbers plus zero.
  • Examples: 0, 1, 2, 3, 4, …

3๏ธโƒฃ Integers

  • Whole numbers including negatives.
  • Examples: -3, -2, -1, 0, 1, 2, 3, …

4๏ธโƒฃ Rational Numbers

  • Can be written as fractions (p/q) where q โ‰  0.
  • Examples: ยฝ, -ยพ, 5 (as 5/1), 0.25 (ยผ).

5๏ธโƒฃ Irrational Numbers

  • Cannot be written as fractions; decimals never end or repeat.
  • Examples: ฯ€ (pi), โˆš2, โˆš5.

6๏ธโƒฃ Real Numbers

  • All rational and irrational numbers combined.
  • Examples: -5, 0, ยฝ, โˆš3, ฯ€.

7๏ธโƒฃ Imaginary Numbers

  • Involve the square root of negative numbers.
  • Example: โˆš-1 = *i* (where *i* is the imaginary unit).

8๏ธโƒฃ Complex Numbers

  • Combine real and imaginary numbers.
  • Example: 4 + 3*i*.

9๏ธโƒฃ Prime Numbers

  • Have only two factors: 1 and itself.
  • Examples: 2, 3, 5, 7, 11.

๐Ÿ”Ÿ Composite Numbers

  • Have more than two factors.
  • Examples: 4, 6, 8, 9, 10.

Rational vs Irrational Numbers: Key Differences Explained

๐Ÿ”น What is a Rational Number?

rational number is any number that can be expressed as a fraction (p/q), where:
โœ” p and q are integers
โœ” q โ‰  0 (denominator cannot be zero)

๐Ÿ“Œ Examples of Rational Numbers:

  • Fractions: 12,3421โ€‹,43โ€‹
  • Whole numbers: 5=51,โˆ’3=โˆ’315=15โ€‹,โˆ’3=1โˆ’3โ€‹
  • Terminating decimals: 0.75=340.75=43โ€‹
  • Repeating decimals: 0.3โ€พ=130.3=31โ€‹

โœ… Key Properties of Rational Numbers:

โœ” Can be positive or negative
โœ” Decimal form either terminates or repeats

๐Ÿ”น What is an Irrational Number?

An irrational number cannot be written as a fraction (p/q).

๐Ÿ“Œ Examples of Irrational Numbers:

  • ฯ€ (Pi) โ‰ˆ 3.14159265… (never ends, no repeating pattern)
  • โˆš2 โ‰ˆ 1.4142135… (non-terminating, non-repeating)
  • โˆš3, โˆš5, e (Eulerโ€™s number)

โŒ Key Properties of Irrational Numbers:

โœ– Cannot be written as p/q
โœ– Decimal never ends (non-terminating)
โœ– Decimal never repeats (non-repeating)

๐Ÿ” Rational vs Irrational Numbers: Quick Comparison

FeatureRational NumbersIrrational Numbers
Can be a fraction (p/q)?โœ… YesโŒ No
Decimal terminates?โœ… SometimesโŒ Never
Decimal repeats?โœ… SometimesโŒ Never
Examples12,5,0.75,0.3โ€พ21โ€‹,5,0.75,0.3ฯ€, โˆš2, โˆš3, e

๐ŸŽฏ Key Takeaways

โœ” Rational Numbers = Can be written as fractions (terminating or repeating decimals).
โœ” Irrational Numbers = Cannot be written as fractions (non-terminating, non-repeating decimals).

๐Ÿ” Why Does This Matter?

Understanding the difference helps in algebra, geometry, and advanced math. Rational numbers are common in daily life, while irrational numbers appear in calculations involving ฯ€, square roots, and logarithms.

Complete Guide to Rational & Irrational Numbers with Formulas & MCQs

๐Ÿ“Œ Rational vs Irrational Numbers: Key Differences

โœ… Rational Numbers (Q)

  • Can be expressed as fractions p/q (q โ‰  0)
  • Decimal terminates (0.5) or repeats (0.333…)
  • Examples:
    โœ” 1/2 = 0.5 (terminating)
    โœ” 2/3 = 0.666… (repeating)
    โœ” 5 = 5/1 (whole number)

โŒ Irrational Numbers

  • Cannot be written as p/q
  • Decimal never ends & never repeats
  • Examples:
    โœ– ฯ€ = 3.141592…
    โœ– โˆš2 = 1.414213…
    โœ– e (Euler’s number)

๐Ÿ” Quick Comparison Table

FeatureRationalIrrational
Fraction form (p/q)?โœ… YesโŒ No
Decimal ends?โœ… SometimesโŒ Never
Decimal repeats?โœ… SometimesโŒ Never
Examples1/2, 0.75, 5ฯ€, โˆš3, e

๐Ÿงฎ Important Number Series Formulas

1. Sum of First ‘n’ Natural Numbers

๐Ÿ“Œ Formula:Sum=n(n+1)2Sum=2n(n+1)โ€‹

Examples:
โœ” Sum of 1 to 10 = 55
โœ” Sum of 1 to 100 = 5050

2. Sum of First ‘n’ Even Numbers

๐Ÿ“Œ Formula:Sum=n(n+1)Sum=n(n+1)

Example:
Sum of first 5 even numbers (2+4+6+8+10) = 30

3. Sum of First ‘n’ Odd Numbers

๐Ÿ“Œ Formula:Sum=n2Sum=n2

Example:
Sum of first 5 odd numbers (1+3+5+7+9) = 25

๐Ÿ“ Practice MCQs (With Explanations)

1๏ธโƒฃ Which is a natural number?
A) -1
B) 0
C) 5
โœ… Answer: C (Natural numbers start from 1)

2๏ธโƒฃ Which is NOT a whole number?
A) 0
B) 10
C) -5
โœ… Answer: C (Whole numbers โ‰ฅ 0)

3๏ธโƒฃ Which is rational?
A) โˆš2
B) ฯ€
C) 1/3
โœ… Answer: C (Can be written as p/q)

4๏ธโƒฃ What type of number is โˆš25?
A) Irrational
B) Rational
C) Natural
โœ… Answer: D) Both B & C (โˆš25 = 5)

5๏ธโƒฃ Sum of rational + irrational = ?
A) Always Rational
B) Always Irrational
โœ… Answer: B (Rational + Irrational = Irrational)

6๏ธโƒฃ Which is a terminating decimal?
A) โˆš3
B) 5/8
โœ… Answer: B (5/8 = 0.625)

7. Ifย *a*ย is rational andย *b*ย is irrational, thenย a + bย is:

A) Always rational
B) Always irrational
C) Can be rational or irrational
D) An integer

โœ… Answer: B (Rational + Irrational = Irrational.)

8. The product of a non-zero rational and an irrational number is:

A) Always rational
B) Always irrational
C) Sometimes rational
D) An integer

โœ…ย Answer: Bย (Example: 2 ร— โˆš3 = 2โˆš3 โ†’ irrational.)

9. Which of the following is rational?

A) (โˆš2 + โˆš3)ยฒ
B) โˆš16/โˆš9
C) ฯ€ + 2
D) โˆš5 ร— โˆš5

โœ…ย Answer: Bย (โˆš16/โˆš9 = 4/3, a fraction โ†’ rational.)

10. The decimal expansion of โˆš2 is:

A) Terminating
B) Non-terminating but repeating
C) Non-terminating & non-repeating
D) Finite

โœ…ย Answer: Cย (โˆš2 โ‰ˆ 1.414213โ€ฆ, non-repeating & infinite.)

11. What is the sum of first 10 natural numbers?

A) 45
B) 50
C) 55
D) 60

โœ… Answer: C
๐Ÿ“Œ Explanation: Using formula n(n+1)/2 = 10ร—11/2 = 55.

12. The sum of two consecutive even numbers is 34. What are the numbers?

A) 14, 16
B) 16, 18
C) 18, 20
D) 20, 22

โœ… Answer: B
๐Ÿ“Œ Explanation: Let numbers be x and x+2 โ†’ x + (x+2) = 34 โ†’ x=16 โ†’ 16,18.

13. What is 1+2+3+…+50?

A) 1250
B) 1275
C) 1300
D) 1350

โœ… Answer: B
๐Ÿ“Œ Explanation: Sum of first n numbers = n(n+1)/2 โ†’ 50ร—51/2 = 1275.

14. The sum of first ‘n’ odd numbers is 225. What is ‘n’?

A) 13
B) 15
C) 17
D) 19

โœ… Answer: B
๐Ÿ“Œ Explanation: Sum of first n odd numbers = nยฒ โ†’ nยฒ=225 โ†’ n=15.

15. What is the sum of first 20 even numbers?

A) 400
B) 410
C) 420
D) 440

โœ… Answer: C
๐Ÿ“Œ Explanation: Sum = n(n+1) โ†’ 20ร—21 = 420.

๐ŸŽฏ Key Takeaways

โœ” Rational Numbers = Fractions (p/q), terminating/repeating decimals
โœ” Irrational Numbers = Non-terminating, non-repeating (ฯ€, โˆš2)
โœ” Sum Formulas:

  • Natural Numbers: n(n+1)22n(n+1)โ€‹
  • Even Numbers: n(n+1)n(n+1)
  • Odd Numbers: n2n2

Leave a Comment