Mathematics

What Is an Equation? Definition, Types, and Examples

Social Share

Introduction to Equations

An equation is a fundamental mathematical statement that shows two expressions are equal, denoted by the equal sign (=). It consists of two main parts:

  • Left-Hand Side (LHS)
  • Right-Hand Side (RHS)

The key principle is that LHS = RHS, meaning both sides balance each other. Equations are essential in algebra, physics, engineering, and everyday problem-solving.


Key Components of an Equation

  1. Variables – Unknown values represented by letters (e.g., x, y).
  2. Constants – Fixed numbers (e.g., 3, 7).
  3. Operators – Mathematical symbols (+, −, ×, ÷).
  4. Equal Sign (=) – Indicates both sides have the same value.

Example of a Simple Equation

Consider the equation:
2𝑥 + 3 = 7

  • LHS: 2𝑥 + 3
  • RHS: 7
  • Goal: Solve for *x* to make the equation true.

Types of Equations in Mathematics

Equations can be classified into different categories based on their structure:

1. Linear Equations

  • Highest power of the variable is 1.
  • Forms a straight line when graphed.
  • Example: 3𝑥 − 5 = 10

2. Quadratic Equations

  • Highest power is 2 (e.g., 𝑥²).
  • Forms a parabola when graphed.
  • Example: 𝑥² + 5𝑥 + 6 = 0

3. Polynomial Equations

  • Include higher powers (e.g., 𝑥³, 𝑥⁴).
  • Can have multiple solutions.
  • Example: 2𝑥³ − 4𝑥² + 𝑥 = 0

4. Exponential Equations

  • Variables appear in exponents.
  • Used in growth/decay problems.
  • Example: 2ˣ = 16

5. Trigonometric Equations

  • Involve trigonometric functions (sin, cos, tan).
  • Used in wave and circular motion problems.
  • Example: sin(𝑥) = 0.5

6. Differential Equations

  • Contain derivatives of functions.
  • Used in physics and engineering.
  • Example: dy/dx = 2x

How to Solve an Equation (Step-by-Step Guide)

Let’s solve the example 2𝑥 + 3 = 7:

  1. Isolate the variable term (2𝑥):
    Subtract 3 from both sides:
    2𝑥 = 7 − 3
    2𝑥 = 4
  2. Solve for 𝑥:
    Divide both sides by 2:
    𝑥 = 4 ÷ 2
    𝑥 = 2
  3. Verify the solution:
    Substitute 𝑥 = 2 back into the original equation:
    2(2) + 3 = 7 → 4 + 3 = 7 (Correct!)

Quadratic Equations: The Ultimate Guide with Examples & Practice Problems

1. What is a Quadratic Equation?

A quadratic equation is any equation that can be written in the standard form:ax2+bx+c=0ax2+bx+c=0

Where:

  • a, b, c are real numbers (a ≠ 0)
  • x is the variable
  • ax² is the quadratic term (must be present)
  • bx is the linear term
  • c is the constant term

Example of Quadratic Equations

2×2+5x−3=0(Standard Form)x2−9=0(Missing linear term)3×2+4x=0(Missing constant term)2x2+5x−3=0(Standard Form)x2−9=0(Missing linear term)3x2+4x=0(Missing constant term)


2. 3 Methods to Solve Quadratic Equations

There are three primary methods to solve quadratics. Let’s explore each with examples.

Method 1: Factorization (Splitting the Middle Term)

Best for: Equations that can be easily factored

Steps:
1️⃣ Find two numbers that:

  • Multiply to a × c
  • Add to b
    2️⃣ Split the middle term using these numbers
    3️⃣ Factor by grouping
    4️⃣ Set each factor = 0 and solve

Example: Solve x2+5x+6=0x2+5x+6=0

  • a = 1, b = 5, c = 6
  • Find two numbers: 2 and 3 (since 2×3=62×3=6 and 2+3=52+3=5)
  • Rewrite:x2+2x+3x+6=0x(x+2)+3(x+2)=0(x+2)(x+3)=0x2+2x+3x+6=0x(x+2)+3(x+2)=0(x+2)(x+3)=0
  • Solutions: x = -2 or x = -3

Method 2: Completing the Square

Best for: Equations where factoring is difficult

Steps:
1️⃣ Move the constant term to the other side
2️⃣ Add (b2)2(2b​)2 to both sides
3️⃣ Rewrite as a perfect square
4️⃣ Take the square root of both sides
5️⃣ Solve for x

Example: Solve x2+6x−16=0x2+6x−16=0

  • Move constant:x2+6x=16x2+6x=16
  • Add (62)2=9(26​)2=9:x2+6x+9=25x2+6x+9=25
  • Rewrite as square:(x+3)2=25(x+3)2=25
  • Take square root:x+3=±5x+3=±5
  • Solutions: x = 2 or x = -8

Method 3: Quadratic Formula (Most Reliable)

Works for ALL quadratic equations

Formula:x=−b±b2−4ac2ax=2ab±b2−4ac​​

Steps:
1️⃣ Identify a, b, c
2️⃣ Compute the discriminant (D = b² – 4ac)
3️⃣ Plug into the formula
4️⃣ Simplify

Example: Solve 2×2+3x−2=02x2+3x−2=0

  • a = 2, b = 3, c = -2
  • Discriminant:D=32−4(2)(−2)=9+16=25D=32−4(2)(−2)=9+16=25
  • Apply formula:x=−3±254=−3±54x=4−3±25​​=4−3±5​
  • Solutions: x = 0.5 or x = -2

3. Practice Problems (With Solutions)

Test your skills with these 5 quadratic equations:

1️⃣ x2−7x+12=0x2−7x+12=0
Solution: x = 3 or x = 4

2️⃣ 3×2+5x−2=03x2+5x−2=0
Solution: x = -2 or x = 1/3

3️⃣ 2×2−4x−6=02x2−4x−6=0
Solution: x = 3 or x = -1

4️⃣ x2+8x+15=0x2+8x+15=0
Solution: x = -3 or x = -5

5️⃣ 5×2+6x−8=05x2+6x−8=0
Solution: x = 0.8 or x = -2


4. Multiple-Choice Questions (MCQs)

Test your knowledge with these 5 MCQs:

Q1. The roots of x2−5x+6=0x2−5x+6=0 are:
A) 2, 3
B) -2, -3
C) 1, 6
✅ Answer: A

Q2. The discriminant of ax2+bx+c=0ax2+bx+c=0 is:
A) b2−4acb2−4ac
B) b2+4acb2+4ac
✅ Answer: A

Q3. If discriminant D<0D<0, the roots are:
A) Real and equal
B) Imaginary
✅ Answer: B

Q4. The solution to x2+4x+4=0x2+4x+4=0 is:
A) x = -2 (double root)
B) x = 2
✅ Answer: A

Q5. In 3x2−7x+2=03x2−7x+2=0, the value of b is:
A) -7
B) 3
✅ Answer: A


5. Quick Method Selection Guide

MethodBest When…
FactorizationEquation easily factorable
Completing SquareLeading coefficient = 1
Quadratic FormulaAlways works (most reliable)

Pro Tip: Use the Quadratic Formula if unsure—it works every time!

Understanding Mathematical Expressions: A Complete Guide with Examples & MCQs

What is a Mathematical Expression?

mathematical expression is a combination of numbers, variables (like x, y), and operations (+, −, ×, ÷) that represents a value.

🔹 Key Feature: It does not contain an equal sign (=).
🔹 If it has “=” → It becomes an equation.


Types of Mathematical Expressions (With Examples)

1. Numeric Expressions (Numbers Only)

  • Example: 5 + 3
  • Example: 12 ÷ 4 × 2

2. Algebraic Expressions (Variables Involved)

  • Simple: x − 4
  • Complex: 2a + 3b − 7

3. Polynomial Expressions (Higher Powers)

  • Example: x² + 3x − 1

Expressions vs. Equations: Key Differences

FeatureExpressionEquation
Equal Sign?❌ No✔️ Yes
Example5 + 35 + 3 = 8
PurposeRepresents a valueShows equality

5 Multiple-Choice Questions (MCQs) with Solutions

Q1. Which of the following is an expression?

A) 5 + 3 = 8
B) 7 × 2
C) x = 10
D) y + 4 = 12

✅ Answer: B
📌 Explanation: Only 7 × 2 has no equal sign.


Q2. Identify the expression:

A) a − 3
B) 2x = 4
C) 5 = 5
D) x + 3 = 10

✅ Answer: A
📌 Explanation: a − 3 has no equality sign.


Q3. Which one is NOT an expression?

A) 4y + 7
B) 2a − 5b
C) 5 + 2 = 7
D) x² + 3x − 1

✅ Answer: C
📌 Explanation: 5 + 2 = 7 is an equation.


Q4. Evaluate 3x + 5 if x = 2.

A) 8
B) 9
C) 11
D) 15

✅ Answer: C
📌 Solution: 3(2) + 5 = 6 + 5 = 11.


Q5. Which expression has two variables?

A) 4a + 7b
B) 5m
C) y − 2
D) 10p

✅ Answer: A
📌 Explanation: 4a + 7b contains a and b.


Bonus: 3 Advanced-Level MCQs (Challenge Yourself!)

Q6. Simplify: 2(x + 3) − 4x

A) −2x + 6
B) 6x − 4
C) 2x + 6
D) −4x + 2

✅ Answer: A
📌 Solution: 2x + 6 − 4x = −2x + 6.


Q7. What is the degree of 3x²y + 4xy − 7?

A) 1
B) 2
C) 3
D) 4

✅ Answer: C
📌 Explanation: The highest power sum (x²y → 2+1=3).


Q8. If a = 3 and b = −1, find 2a² − b³.

A) 17
B) 19
C) 21
D) 23

✅ Answer: B
📌 Solution: 2(3)² − (−1)³ = 18 − (−1) = 19.

Advanced Equations: 10 Challenging MCQs with Step-by-Step Solutions

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button